天下网吧 >> 网吧系统 >> 系统动态 >> 正文

为什么现在的人工智能助理都是坑?

2016-11-26不详佚名
为新一代颠覆性人机交互的理解,才在产品形态上能发挥底层技术的商业价值。最后,再举个例子,GUI的核心突破是技术大牛(xerox)带领的,而其商业应用的发扬光大则是产品经理乔布斯从xerox那儿“偷来”的。

为什么现在的人工智能助理都是坑?

1973年,xerox推出第一款GUI技术个人电脑;在1983年,苹果也推出了他们首款GUI电脑Lisa(乔老爷“完美借鉴”)

年轻人不懂就要多看书。

1)CUI的不可延续GUI的特点

为了深入理解这个问题,我们可能要先分析一下,CUI和GUI究竟给用户体验带来什么影响?因为这绝不是现在主流的“把按钮变成语言操控”那么简单的事情。

当移动设备出现的时候,大家对如何在智能手机上开发产品还没有来得及有深入的了解。所以当时开发者基本都是从最明显的地方起步,也就是触摸代替键鼠操作。早期的大量应用,都是从“如何把web缩小到手机屏幕”的思路出发来设计APP的。——这是典型的延续上一代交互的思路。

随着开发者不断思考和挖掘移动端的潜力,慢慢有了对移动端真正的核心特质的理解——这些“圣杯属性”才是真正让移动端产品设计出众的要素。比如“碎片时间”、“个人身份绑定“、”LBS”等等,这些特质才是真正让移动产品体现价值的——这些是完全颠覆上一代交互的属性。而且我们发现这些属性几乎跟“触摸”这个明显的交互行为没有直接关系。

现在CUI出现的时候,产品经理也会面临类似的问题。当前大多数智能助理的设计思路都是“过去APP是怎么用的,我现在用语言来代替触摸操作”。好比是用语言来代替手指去触摸屏幕,或者是用说话来代替手指打字。而能让用户感觉真正智能的核心,我认为依然藏在CUI的“圣杯属性”里,有待大家发掘。

2)CUI的特点:高度个性化

举一个例子,根据实际研发和市场运作的经验,我们发现有一个算得上“圣杯属性”是特质是:“高度个性化”。

在GUI时代,用户使用产品时,有一个可视化的界面,比如找餐厅,我们打开点评看上去是这样:

为什么现在的人工智能助理都是坑?

这看上去是一个大家非常熟悉的界面,只是所有用户能做的选择范围,都明确的显示在界面上(所见即所选)。找美食,用户能做的选择基本就是:附近,类型,智能排序(不点开可能还不知道是什么意思)以及排序。当用户自己不知道该如何决策的时候,这些视觉化的框架,给了用户提示该从这些方面根据自己的需求来做筛选和匹配。

但是在智能助理的界面,用户看到的是这样的:

为什么现在的人工智能助理都是坑?

用户对可以做哪些选择一无所知——在没有可视化的参考下,面对如此开放的交互,当用户要找一个餐厅的时候,他们提出的要求,大都不在GUI设定的范围以内。

根据我们实际操作的经验,用户提出的问题是这样的:

为什么现在的人工智能助理都是坑?

只有“在外滩附近的”是之前GUI的查询范围当中的,其他的需求都是过去GUI的类型当中不存在的维度。但因为CUI的开放性,用户很容易给出上面这样的高度个性化(非结构化)的需求。

如果GUI的产品试图在个性化同样给用户那么多选择,就不得不面临用户使用成本的问题。一个界面可能会被大量的下拉列表,层级关系,各种填空和操作充满。如此是加深了个性化程度了,但是操作的成本会让用户放弃使用。

如果在智能助理的产品设计上,不尊重用户“高度个性化”的需求,只提供过去APP本身提供的个性化程度“在XX附近找个YY菜”,那么用户在实际提需求的时候得靠运气撞到既定的条件上,不然就是无法识别的范围,继而失望。另一方面,如果CUI只是在做GUI范围内的事情,会远不足以颠覆APP。

除此之外,CUI还有一些专属的特点。比如

使用流程非线性:比如GUI是线性的流程,界面引导用户一步一步走到结果;而CUI则可以是完全无视先后顺序的,用户可以再最开始就提出本来到排在最后的条件当中。

可避免信息过载:用户打开GUI的一个界面,比如点评上找一个餐厅,用户得在一个列表里去找寻自己最想要的选项(典型的案例是,GUI让用户选择国家的时候那一长排的列表)。而CUI则可以规避用户的信息过载,直接给出期望的结果。这个特点的另一面是,GUI因此是informative的,给不熟悉场景的用户更多的提示,或者比较结果的机会。

复合动作:“明天后天,晚上最便宜的机票”——从用户的操作和实际体验来看,GUI无法一次给出结果,只能用户先查一次明天的机票,再查一次后天的机票,然后手动来对比。CUI完胜——可以直接给出相关条件的检索结果,前提是AI足够优秀。

这里只是抛砖引玉,详细更多特质会不断被开发者发掘出来。在这里就不详细展开了。在另一篇《人工智能时代的产品经理》文章当中,会做更多关于CUI的分析。

-什么样的AI Agent能满足C端的需求?-

为什么现在的助理产品都是坑?很多团队不是底层的算法差,而是团队对产品的理解有问题。

要满足C端用户的需求,确实非常难。10次使用,有一次因为任意原因的失望,用户心理就会开始有疑虑。从体验上来看,在用户熟悉的场景下得全面理解用户提出的需求;在用户自身不清楚场景下,得自然的协助用户挖掘需求;获得需求后得帮助用户做决策,并最终呈现结果。以此来看,对话式的agent得至少满足以下功能:

  1. 具备基于上下文的对话能力(contextual conversation);

  2. 具备理解口语中的逻辑(logic understanding);

  3. 所有能理解的需求,都要有能力履行(full-fulfillment);

1)基于上下文的对话能力(contextual conversation)

在当前,做助理的产品的底层技术基本都是围绕NLU(自然语言理解)打造的,很多还没有涉及到NLP。可是无论是大公司还是小公司的NLU都是让人失望的。举个简单的例子,在大公司的几个产品上提出需求:我下周五要去北京,帮我查一下航班。

需要识别意图:查机票

需要识别entities:时间(下周五),目的地(北京),出发地(无/当前地理位置)

我们看看结果,首先

本文来源:不详 作者:佚名

声明
声明:本站所发表的文章、评论及图片仅代表作者本人观点,与本站立场无关。若文章侵犯了您的相关权益,请及时与我们联系,我们会及时处理,感谢您对本站的支持!联系Email:support@txwb.com,系统开号,技术支持,服务联系QQ:1175525021本站所有有注明来源为天下网吧或天下网吧论坛的原创作品,各位转载时请注明来源链接!
天下网吧·网吧天下