Hassabis:这是非常重要的。AlphaGo在比赛中实际上并没有使用那么多硬件,但我们需要大量的硬件来训练它,做各种不同的版本,并让他们在云端互相比赛。这需要相当多的硬件才能高效完成,所以如果没有这些资源,在这段时间内根本无法完成。
| 不看机器人,关注科学的进展
The Verge:让我们来说说机器人。我平时在日本,并倾向于认为日本是机器人的精神家园。我现在在日本看到的机器人以两种方式使用。我们有像发那科这样的工业机器人,有一个确定的目的做着让人惊讶的事情,也有像软银Pepper那样的迎宾机器人,尽管使用有很大的限制,但他们在很多方面都是野心勃勃。对于这个领域现在的状态,你有什么想法?
Hassabis:是的,我认为你说的发那科,他们有很漂亮、很能干的身体,但缺少了智慧。而迎宾机器人和智能手机助手更像,我见过的那些,反正都是预编程了很多针对模板的反应,但如果你做一些其他事情,例如去越野的地方滑雪,那他们会感到很困惑。
The Verge:所以我猜测,一个很明显的问题是,机器学习会如何强化机器人的能力。
Hassabis:是的,这是完全不同的方法。你可以从头开始建立学习新事物,并能应对突发事务的能力,我认为这就是当机器人或软件应用程序在真实世界中和用户交互时所需要的——他们需要拥有这种能力,并妥善使用。我认为学习曲线最终必须采用正确的做法。
The Verge:对于可学习的机器人来说,什么是你看到的最直接使用案例?
Hassabis:其实,我们对此没有太多的想法。显然,自动驾驶汽车是一种机器人,但目前来说还是狭义的人工智能,虽然他们使用了计算机视觉里面一些可学习的人工智能——特斯拉采用了一种基于深度学习的标准、现场的计算机视觉方案。我相信日本在老年护理机器人、家庭清洁机器人上面有很多思考,我认为这对社会会非常有用。特别是在一个人口老龄化的社会里,我认为是一个非常紧迫的问题。
The Verge:为什么在这些类型的案例中,一个更基础的学习方法,能带来如此显著的提高呢?
Hassabis:那么,你需要思考这样的问题:“为什么我们还没有拥有这些东西?”为什么我们没有一个机器人,可以跟在你后面清理房子?原因在于,每个人的房子在布局、家具等方面有很多的不同,有时候它是混乱的,有时候却很干净。因此,很难通过预编程的方法,找到整理你的房子的解决方案,对吧?而且你还得考虑,你的个人偏好,例如你会喜欢衣服怎样被折叠。这真的是非常复杂的问题。我们认为,这些事情对于人类来说很简单,但实际上我们必须处理非常复杂的事情。
The Verge:出于个人兴趣问一下,你有机器人吸尘器吗?
Hassabis:额,我的确有一个,但是它不怎么管用所以…(笑)
The Verge:我也有一个机器人吸尘器,它不是非常管用,但我发现自己能学习它奇怪的地方,并围绕它工作,因为我是一个懒人,而它带来的好处值得我这么做。所以我想知道,我们什么时候能有更先进的机器人,在“足够好”的引爆点到来之前?我们会在有意义的达到人类水平的交互和围绕这个奇怪的小玩意工作之前,就停止研发吗?
Hassabis:是的,我的意思是,也许吧。我想每个人都会以合理的价格购买一个机器人,它可以叠好盘子,并清洗干净——这些哑巴吸尘器非常受欢迎,但无论如何,他们并没有真正的智能。所以,我觉得其中的每一步,逐步的的进展,就会发明出有用的东西。
The Verge:那么,你对人类、机器人和人工智能在未来的交互,有什么遥远的期望?显然,人们的脑袋能到达那些非常狂热的科幻地方。
Hassabis:我自己对机器人没多少思考。我自己对人工智能的使用感到兴奋的领域是科学,能够推动它更快的发展。我想看到人工智能辅助的科学,那样会有一个人工智能研究助手,它可以做很多乏味的工作,阅读有趣的论文,从海量的数据中找到结构,并把它们呈现到人类专家和科学家面前,以实现更快的技术突破。我几个月前在欧洲核子研究中心做演讲,很显然它们创造出比地球上任何地方都多的数据,我们都知道在它们海量的硬盘中,可能会有某个新的粒子发现,但没有人能抽出时间做这件事情,因为这里的确有太大了的数据了。所以我觉得,如果有一天人工智能参与寻找到一个新的粒子,那么是一件非常酷的事。
注:以上图片均来自译文。
本文来源:不详 作者:佚名