小结:
也许后面李世石接着输了,也许柯洁也被AlphaGo超越了,也许以后博弈类的游戏人类再也不是机器的对手了,但我们依然觉得,把AlphaGo的原理搞清楚了,像IBM的深蓝一样让我们对它知根知底,就是它最大的破绽。
目前网上分析AlphaGo的文章一大推,因为晦涩难懂,引发了人类对它的敬畏,或者说对它的恐惧,但我们若把它往简单里看。
1997年的IBM深蓝依靠计算力和暴力穷举,超越了人类在国际象棋上的局限。
2009年的时候,一个叫做Hinton的老头第一次把他研究了近30年的深度神经网络介绍给了做语音识别的学者,到了第二年语音识别领域就发生了巨大的突破。
于是深度学习网络像开了挂一样开始向人工智能的各个领域蔓延,并开始出现CNN、RNN等更多具体的变种。
直到2016年3月,它用在围棋游戏上跟人类对弈。
那怎么简单描述深度网络在围棋上的应用呢?
“我的理解,两个深度网络的工具,Policy Network+Value Network通过评估每一步收益,用来简化蒙特卡洛树(AI框架)的搜索空间,取得落子最优和时间消耗的平衡。”杨钊如是说。
本文来源:不详 作者:佚名