航空电子系统经过几十年的发展,正在经历从模拟化向数字化系统的转变,逐步跨入第4代航空电子系统,其主要特点就是在第3代基础上,以高速大容量的信息交换为基础,从综合化向高度综合化发展,实现资源共享与数据融合,其任务划分、模块分配和作业调度,都依赖于数据网络系统的性能,这些性能包括网络拓扑结构、传输带宽、可靠性及数据延迟性能等。因此,未来先进航空电子系统中各站点之间的数据流将更为复杂,包括射频、视频等大流量数据,有的节点速率需求将超过1Gb/s,而现有的低速数据总线很难满足如此高速的数据传输要求。
美国国家标准委员会于1988年开始制定的光纤通道(Fiber Channel,FC)是一种高速串行总线协议,不仅具有高带宽、高可靠性、低延时、传输距离远、拓扑灵活的优点,而且支持多种上层传输协议。光纤通道的这一优点使得在同一物理接口上运行多种上层通道标准和网络协议成为可能。目前已经实现的ML-STD-1553到光纤通道协议的映射,以及ML-STD-1553远程终端器件与光纤通道互联方案的系统综合,为未来航空电子系统中不同总线的互连提供了一条新的途径,使得系统在保留传统网络拓扑和协议的同时,获得光纤通道所提供的高带宽服务。
基于此设计思想,本文提出了一种IEEE1394到光纤通道传输协议的映射方案,在此工作基础上,利用现场可编程逻辑阵列(FPGA),对所提出的协议映射方案进行了硬件设计与实现,设计了一个基于FC的IEEE1394光信号传输系统。
1 IEEE1394到光纤通道的协议映射
首先简要介绍本文提出的一种IEEE1394到光纤通道传输协议的映射方案,更详细的说明可参考文献。所提协议映射方案的基本思想是:在IEEE1394到FC数据包的映射过程中,保留FC原来的帧格式形式,将FC帧头部分中源节点和目的节点的地址分别映射为IEEE1394源节点和目的节点的地址,并将IEEE1394数据包中除了数据域外的其他信息映射到FC的64Byte可选帧头上,数据域的信息映射到FC的有效数据区。此外,由于FC一个数据帧的有效数据区长度只有2048Byte,而在通道传输速率大于200Mb/s,IEEE1394的等时数据包或传输速率大于400Mb/s时,异步数据包的最大有效长度将超出FC有效数据区的大小。因此,当IEEE1394数据包的长度超出了FC有效数据区长度时,应该将该数据包映射成一个连续的FC数据帧序列。下面以IEEE1394异步数据包到FC数据帧的映射为例,说明两种协议的映射过程。
IEEE1394异步数据包及FC数据帧格式如图1,图2所示。图3为IEEE1394数据帧到光纤通道帧格式映射关系。
对映射过程的说明:
1)目的节点和源节点地址由IEEE1394的16位扩充到24位,使网络规模变得比单一的IEEE1394网络要大。
2)T-TYPE用来指明交换消息的传输特性,包括交换的传输方向和终端-终端(NT-NT)交换的性能定义。在NT-NT类型交换中,将为接收NT提供发送NT的地址,或者为发送NT提供接收NT的地址。
3)T—CTL用于实现FC网络和IEEE1394网络之间的消息传输,实现两者之间的桥路连接,完成FC网络终端或网络控制器与IEEE1394节点之间的消息传输。
4)将IEEE1394中的帧头CRC校验和数据CRC校验分开。在IEEE1394数据传输中,首先进行的是帧头CRC校验,如果发现错误,则立即抛弃该帧。所以这里设想将IEEE1394数据CRC放在光纤通道数据帧的可选帧头,将帧头CRC放在光纤通道数据帧CRC校验中,这样可以先检测帧头CRC,节省系统开销。