全世界的人工智能(AI)研究人员很快就能使用DeepMind的旗舰平台,来开发能够自主学习和思考的创新性计算机系统了。
DeepMind是谷歌2014年以4亿英镑收购的人工智能部门,目前正在打造一系列能够自主学习和思考的智能计算机系统。DeepMind近日宣布,将其AI核心平台“DeepMind Lab”开源,供研究人员和开发者进行实验和研究。
DeepMind称,DeepMind Lab是一个类似于3D游戏的平台,专为基于智能体(Agent,即虚拟代理)的AI研究而定制。
DeepMind创建于2010年,致力于研发AI智能体。其所开发的AI智能体能够熟练操控许多街机游戏,如《太空入侵者》(Space Invaders)和《吃豆人》(Pac-Man)等。近期,又在复杂的围棋比赛中战胜了世界高手李世石。
对于DeepMind Lab,DeepMind联合创始人谢恩·莱格(Shane Legg)和其他几名员工在一篇博客文章中称:“它从自己的视角,通过模拟智能体的眼睛进行观察。它以丰富的科幻视觉来呈现场景。可用的操作能让智能体环顾四周,并以3D的形式移动。智能体的外形是一个悬浮的球体,它的悬浮和移动是通过激活与期望运动方向相反的推动器来实现。它还拥有一个摄像头,能观察其旋转时的动作。”
“示例任务包括收集水果、走迷宫、穿越危险的通道且要避免从悬崖上坠落、使用发射台在平台间移动、玩激光笔、以及快速学习并记住随机生成的环境。”
DeepMind Lab将几个不同的AI研究领域整合到一个环境下,以方便研究人员测试AI智能体的导航、记忆和3D视觉等能力,以及在计划和策略方面的表现。
DeepMind在博客中称:“这里的每个任务都被视为处于前沿的研究问题。我们把它们放在一个平台上,代表了这个领域的一个重要的新挑战。”
DeepMind Lab具有较高的适应性,并且可扩展。它包括一个可编程的关卡生成(level creation)界面,可根据玩游戏的逻辑、拾起物体、特定观察、关卡重玩、奖励机制、游戏内消息生成定制化关卡。
DeepMind称:“我们相信,它已经对我们在多方面智能(包括自然智能和人工智能)的理解上,产生了重大影响。但是,我们目前的努力还只挖掘出DeepMind Lab潜力的一小部分。对于一些目前尚未涉及、但可以在DeepMind Lab上有所作为的研究领域,仍有许多重大发现的机遇,如导航、记忆和探索。”
Deepmind表示,将把DeepMind Lab平台的全部代码上传至Github(一个面向开源及私有软件项目的托管平台),供研究人员和开发者进行实验和研究。
以下为DeepMind在公司网站上发布的关于DeepMind Lab的学术论文:
摘要
DeepMind Lab是一个第一人称3D游戏平台,专门为研究通用人工智能和机器学习系统而设计。DeepMind Lab可用于研究自动代理如何在大型、部分可视、视觉多样化的环境中学会执行复杂任务。DeepMind Lab有一个简单灵活的API,可用于探索创造性的任务设计和全新的AI设计,并快速迭代。它由一个快速且被广泛认可的游戏引擎所驱动,并针对开发者社区的高效利用进行了定制。
介绍
通用智能(GI)衡量一个智能体(agent,即虚拟代理)在各种环境下实现目标的能力。当前在自然世界中已知的唯一通用智能的例子就是动物。动物在基于物理和感官的条件下,通过演化、发育、学习产生了智能。而人类和其他动物的智能在很大程度上可能是因为所处环境的多样性所导致的结果,没有这种环境,智能可能无法产生。其中一个选择就是直接研究物理世界中的机器人的具体化智能(EI),但这方面的研究通常会遇到一些因素的阻碍,如时间过得太慢,相关的硬件成本太高。另一个选择就是研究逼真的虚拟世界,这样上述两个阻力都能得到解决。
之前,创建逼真的虚拟世界以作为AI研究平台的工作受到了巨大的工程(engineering)量的阻碍。这一次,为解决该问题,我们推出了DeepMind Lab。DeepMind Lab是一个第一人称3D游戏平台,建立在游戏开发商id software公司的《雷神之锤3:竞技场》(Quake III:Arena)游戏引擎之上。
它以丰富的科幻视觉来呈现场景。可用的操作能让智能体环顾四周,并以3D的形式移动。示例任务包括收集水果、走迷宫、穿越危险的通道且要避免从悬崖上坠落、使用发射台在平台间移动、玩激光笔、以及快速学习并记住随机生成的环境。DeepMind Lab已经成为DeepMind内部的一个主要研究平台。例如,它被用于开发强化学习的异步方法、无监督的辅助工作,以及学习导航等。
人们可能会将DeepMind Lab与其他游戏AI研究平台(强调“像素到行动”的自主学习智能体)相比较。例如,DeepMind之前使用的“街机学习环境”(Arcade Learning Environment)既不是3D,也不是第一人称。而在3D AI研究平台中,DeepMind Lab不仅能与VizDoom和Minecraft等平台相提并论,还拥有比这些平台更强大的功能。例如,DeepMind Lab拥有更丰富的视觉效果和更自然的物理效果。
DeepMind Lab的人工通用智能(AGI)研究主要强调原始像素输入(raw pixel inputs)、第一人称视角、运动控制、导航、规划、策略、时间,完全自主的智能体必须通过探索周围环境自主学习要执行什么任务。所有这些因素都使得学习变得非常困难。这里的每个任务都被视为处于前沿的研究问题。我们把它们放在一个平台上,代表了这个领域的一个重要的新挑战。
DeepMind Lab研究平台
DeepMind Lab建立在游戏开发商id software公司的《雷神之锤3:竞技场》(Quake III:Arena)游戏引擎之上。DeepMind Lab还包含一些工具,主要来自q3map2(GtkRadiant,关卡编辑器)和bspc(bspc,关卡编辑器),用于关卡生成(level generation)。机器人(bot)脚本基于OpenArena项目(《雷神之锤3:竞技场》的开源内容包)代码。
针对机器学习定制
我们创建了一套定制化资产,让DeepMind Lab别具风格,与众不同。
它尤其专注于丰富的视
本文来源:不详 作者:佚名