正如Hassabis所言,目前基本所有的智能手机助手都属于特殊案例和预编程的,这意味着它们很脆弱,只能做预编程写好的事。然而真实的世界非常混乱,用户们也会在你无法提前知晓的情况下,做着不可预知的事情。所以DeepMind的信念是:通往人工智能的唯一道路,是从地基开始打起,而且变得通用。这也是最根本的原则之一。
针对这点该如何改进,Hassabis的看法是:”由于智能手机的输入十分多变,所以或许得输入有’上万吨’的数据,才可以从中学习到很多东西。根据AlphaGo的算法,我们打算在未来几个月尝试的是,摆脱监督式学习的出发点,让它完全自我发挥,从一无所有的状态开始。它会需要更长的时间,因为当你采用随机方法的时候,其中的审查和错误会需要更多的时间训练,也许是几个月。但是,我们认为有这个可能性,让它从纯粹的学习中起步。“对于何时才能看到人工智能给市场带来显著性差异,Hassabis给出的答案是:”我认为在未来的两到三年会开始看到改善。我的意思是,这些改善在开始的时候是非常微小的,只有很小的部分会工作的更好。也许在未来的4到5年,甚至5年更多,你可以看到智能手机在功能上大的变化。“
为何选择Google?
事实上,AlphaGo在比赛中并没有使用那么多硬件,然而Deepmind团队需要大量的硬件来训练它,做各种不同的版本,并让他们在云端互相比赛。这需要相当多的硬件才能高效完成,所以如果没有这些资源,在这段时间内根本无法完成。这也是Deepmind选择与Google合作的原因之一。
关于是否期待被纳入Google商业模式与产品路线图中,Hassabis认为:“在如何最优化研究进展方面,我们有很强的主导权。这是我们的使命,也是为什么我们加入了Google,这样我们可以给研究进行涡轮增压。这是发生在过去几年的事情。当然,我们实际上也致力于很多Google内部的产品,但是他们是非常早期的阶段,所以还没准备好公布。当然我认为智能手机助手是非常核心的,我认为Sundar Pichai已经对此谈了很多,这是Google未来的核心。”
对于与Google Brain是否有合作,Hassabis表示:“其实我们是非常互补的。我们每周都有交谈。Google Brain主要致力于深度学习,他们也有非常卓越的工程师Jeff Dean,所以他们已经铺开到公司的各个角落,这也是为什么我们发明出了令人惊喜的Google图片搜索。他们正在做着现象级的工作。另外,他们的团队在山景城,所以他们离产品团队更近,他们的研究周期也更像12到18个月。而我们有更多算法开发的工作,我们倾向于为需要两三年研究的事情做研究,而且不需要在开始的时候就有直接的产品焦点。”
关注未来科学
关于机器人科学目前的发展状况,Hassabis认为它们或许有漂亮的躯干,但是依然缺乏智慧的“大脑”,与智能手机助手目前的状况相似,机器人目前似乎只能对预先进行编程的情况作出反应,一旦处于状况之外,机器人无疑会无所适从。因此如何通过机器学习强化机器人的能力十分重要。
对于科学习的机器人,Hassabis举出了一些直接使用的案例:“显然,自动驾驶汽车是一种机器人,但目前来说还是狭义的人工智能,虽然他们使用了计算机视觉里面一些可学习的人工智能——特斯拉采用了一种基于深度学习的标准、现场的计算机视觉方案。我相信日本在老年护理机器人、家庭清洁机器人上面有很多思考,我认为这对社会会非常有用。特别是在一个人口老龄化的社会里,我认为是一个非常紧迫的问题。“
对人类、机器人和人工智能在未来的交互,Hassabis的期望是:“我自己对机器人没多少思考。我自己对人工智能的使用感到兴奋的领域是科学,能够推动它更快的发展。我想看到人工智能未来能够辅助科学,如果有一个人工智能研究助手,它可以做很多乏味的工作,阅读有趣的论文,从海量的数据中找到结构,并把它们呈现到人类专家和科学家面前,以实现更快的技术突破。我几个月前在欧洲核子研究中心做演讲,很显然它们创造出比地球上任何地方都多的数据,我们都知道在它们海量的硬盘中,可能会有某个新的粒子发现,但没有人能抽出时间做这件事情,因为这里的数据量的确太过庞大。所以我觉得,如果有一天人工智能参与寻找到一个新的粒子,那么是一件非常酷的事。”
本文来源:不详 作者:佚名