随着手机进入到智能机时代,人们对于智能机的依赖程度与日俱增,可以看到的是,手机的屏幕变得越来越大,但是电池容量,却一直处于一个相对稳定的范围区间,于是手机的续航能力被一次又一次的推到风口浪尖上,不知引得多少用户吐槽。不过面对电池技术的瓶颈,很多技术人员也是徒呼奈何,正是在这样一个背景下,一种曲线救国的解决方案出现了,它就是快充。
既然电池本身续航能力不够,那么从充电速度上着手确实是一个不错的解决之道,在目前市面上的产品中,采用的快充方案大致有四种,即高通的QuickCharge版(如QC2.0、QC3.0),联发科版(Pump Express和Pump Express plus),OPPO的VOOC,以及TI的Maxcharge,最后一种方案实际上同时兼容了高通QC2.0版和联发科Pump Express协议,可以看做是在原有USB 5V充电技术上进行突破的综合版本,所以一般我们都将主流的快充技术分为前三种。
我们知道,几种快充方案在速度上,相比于此前的充电效率,要提高了很多倍,其中比较令人耳熟能详的广告文案便是“充电5分钟,通话XX小时”。这就不免令人怀疑,在如此告诉的充电效率下,安全性真的能够保证吗?
快充为何能缩短时间
想要探究安全性,我们还是要先从理论开始补习,至少,我们也要先了解快充的原理,那么快充为何能够缩短时间呢?从物理计算公式上来说,功率(P)=电压(U)x电流(I),在电池电量一定的情况,功率标志着充电速度,套用这个公式,我们再来看三种快充方案,就会比较好理解了。
VOOC
低电压高电流模式
首先来说一下较早的快充方案VOOC吧,该方案是采用了低电压高电流模式,简单来说,就是在电压一定的情况下,通过增加电流,使用并联电路的方式进行分流,进行并联分流之后,每个电路所分担的压力会变小,而在手机中也进行同样的处理,每条电路所承受的压力也会变得更小,从而在保证充电速度的同时,也能减少手机充电时适配器与手机的发热情况。
相信很多朋友都知道,OPPO的闪充充电线缆线路采用了7针的设计,就是为了解决大电流在传输线路里的损耗过大的问题,电池的触点也相应增加,并采取了一定的均流措施,也是为了解决大电流下电池发热问题。同时,VOOC使用了MCU单片微型计算机来取代传统充电电路中的降压电路。智能的MCU管理芯片可以自动识别当前充电设备是否支持VOOC闪充,以确定是否采用闪充模式。
Quick Charge
高电压高电流模式
相比于VOOC,高通Quick Charge 2.0采用了一种不一样的方式,高电压高电流模式,顾名思义,也就是同时增大电流与电压,通过前面的公式P=UI,我们可以发现,这种方式是增大功率最好的方法,不过其中的弊端是增大电压的同时会产生更多的热能,这样其中所消耗的能量就变多了,而且电压与电流也无法无限制的随意增大。
好在为了弥补消耗增加的不足,高通推出了Quick Charge 3.0方案,采用了“最佳电压智能协商”(Intelligent Negotiation for Optimum Voltage,INOV)算法,可在任意时刻实现最佳功率传输,且最大化效率。与Quick Charge 2.0相比,可以提高快速充电速度最高达27%,减少功率损耗最高也可以达到45%。而且在充电电压方面,Quick Charge 2.0提供5V、9V、12V和20V四档充电电压,Quick Charge 3.0则以200mV增量为一档,提供从3.6V到20V电压的灵活选择。这样就使其能够适应各种手机,允许手机获得恰到好处的电压,达到预期的充电电流,从而最小化电量损失、提高充电效率并改善热表现。
Pump Express
高电压恒定电流模式
与Quick Charge 2.0相似,Pump Express由于提高了充电器的输出电压,突破了充电电流的限制。同时缺点也与QC2.0类似,由于充电器的调压档跨度比较大,导致手机端充电路效率偏低。于是MTK Pump Express Plus快充技术应运而生,其与高通Quick Charge 3.0类似,增加了调压档数,每档200mV。
本文来源:不详 作者:佚名