天下网吧 >> 网吧系统 >> 系统动态 >> 正文

扎克伯格的尴尬与AI的真实进展

2016-12-26不详佚名
也提到感知上下文是非常关键的一个环节(Understanding context is important for any AI.)

这种理解在互联网企业那里很可能非常有代表性,但问题就在于感知恰恰是打造一个初级的Jarvis这样的系统时最难的环节。因为感知总是要打穿原子和比特的边界。Language Processing、Speech Recognition、Face Recognition总是立刻可用的,只受限于算法的发展程度和数据,但感知部分不是这样,不单要算法行,器件、生产都要行才能有好的结果。比如说麦克风阵列,你算法再好但MEMS麦克风不给力,那你一样抓瞎。如果要说的短板的话,在深度学习突破后,感知这一环节才是真的短板。

这就涉及到这次AI突破的一个深层次问题:这次的AI起于深度学习的突破,但真要想创造价值并不能停步在深度学习本身。关键原因就在于其AI创造价值的链条比较长,必须打破软硬的边界,补全整个链条,价值才会体现出来。几乎我们所有能想到的大机会都是这样,语音交互(需要打穿声学和识别边界),自动驾驶(打穿计算机视觉、雷达、机械控制的边界)等。这部分难度通常是被忽略了,似乎是有几个深度学习专家问题就可以搞定一切问题。后者不是不行,但要限定在特定类别的事情上,比如图普科技做的鉴黄等。正是同时做好软硬这部分在拉长投资-回报的周期。投资和创业如果对此没有自己的判断,那准备的耐心可能就不够。

小结

近来和AI各方面的人(创业者、投资人、科学家、媒体)接触下来,发现大家基本都在思考这样两个问题:

第一,本次AI浪潮会不会和前两次一样很快冷下来?

第二,落地点到底在那里,究竟还要多久?

对于第一个问题到现在为止还没碰到任何一个人认为这次AI浪潮会冷到前两次那样。对于第二个问题,大的落地点上大家基本也已经达成了共识(语音交互、AR、自动驾驶等),争议最大的就是启动期究竟还要持续多久这一点。从两个维度来判断,这个时间更可能是在3年左右,一是产品经过两个周期的优化会更加成熟;一个是计算能力、基础设施到那个时候也会变的足够强大和便利(过去3年Training速度提高了60倍,比摩尔定律还快。Intel则正在推出集成度更高的服务器)。

本文来源:不详 作者:佚名

声明
声明:本站所发表的文章、评论及图片仅代表作者本人观点,与本站立场无关。若文章侵犯了您的相关权益,请及时与我们联系,我们会及时处理,感谢您对本站的支持!联系Email:support@txwb.com,系统开号,技术支持,服务联系QQ:1175525021本站所有有注明来源为天下网吧或天下网吧论坛的原创作品,各位转载时请注明来源链接!
天下网吧·网吧天下