人工智能(AI)是科技研究中最热门的方向之一。像IBM、谷歌、微软、Facebook和亚马逊等公司都在研发上投入大量的资金、或者收购那些在机器学习、神经网络、自然语言和图像处理等领域取得了进展的初创公司。考虑到人们对此感兴趣的程度,我们将不会惊讶于斯坦福的专家在人工智能报告中得出的结论:“越来越强大的人工智能应用,可能会对我们的社会和经济产生深远的积极影响,这将出现在从现在到2030年的时间段里。”
在本文中,我们将聚焦于开源的人工智能工具,详细的了解下最著名的15个开源人工智能项目。以下这些开源人工智能应用都处于人工智能研究的最前沿。
1. Caffe
它是由贾扬清在加州大学伯克利分校的读博时创造的,Caffe 是一个基于表达体系结构和可扩展代码的深度学习框架。使它声名鹊起的是它的速度,这让它受到研究人员和企业用户的欢迎。根据其网站所言,它可以在一天之内只用一个NVIDIA K40 GPU处理6000万多个图像。它是由伯克利视野和学习中心(BVLC)管理的,并且由NVIDIA和亚马逊等公司资助来支持它的发展。
2. CNTK
它是计算网络工具包Computational Network Toolkit的缩写,CNTK 是一个微软的开源人工智能工具。不论是在单个CPU、单个GPU、多个GPU或是拥有多个GPU的多台机器上它都有优异的表现。微软主要用它做语音识别的研究,但是它在机器翻译、图像识别、图像字幕、文本处理、语言理解和语言建模方面都有着良好的应用。
3. Deeplearning4j
Deeplearning4j 是一个java虚拟机(JVM)的开源深度学习库。它运行在分布式环境并且集成在Hadoop和Apache Spark中。这使它可以配置深度神经网络,并且它与Java、Scala和其他JVM语言兼容。
这个项目是由一个叫做Skymind的商业公司管理的,它为这个项目提供支持、培训和一个企业的发行版。
4. DMTK
DMTK 是分布式机器学习工具Distributed Machine Learning Toolkit的缩写,和CNTK一样,是微软的开源人工智能工具。作为设计用于大数据的应用程序,它的目标是更快的训练人工智能系统。它包括三个主要组件:DMTK框架、LightLDA主题模型算法和分布式(多义)字嵌入算法。为了证明它的速度,微软声称在一个八集群的机器上,它能够“用100万个主题和1000万个单词的词汇表(总共10万亿参数)训练一个主题模型,在一个文档中收集1000亿个符号,”。这一成绩是别的工具无法比拟的。
5. H20
相比起科研,H2O 更注重将AI服务于企业用户,因此H2O有着大量的公司客户,比如第一资本金融公司、思科、Nielsen Catalina、PayPal和泛美都是它的用户。它声称任何人都可以利用机器学习和预测分析的力量来解决业务难题。它可以用于预测建模、风险和欺诈分析、保险分析、广告技术、医疗保健和客户情报。
它有两种开源版本:标准版H2O和Sparking Water版,它被集成在Apache Spark中。也有付费的企业用户支持。
6. Mahout
它是Apache基金会项目,Mahout 是一个开源机器学习框架。根据它的网站所言,它有着三个主要的特性:一个构建可扩展算法的编程环境、像Spark和H2O一样的预制算法工具和一个叫Samsara的矢量数学实验环境。使用Mahout的公司有Adobe、埃森哲咨询公司、Foursquare、英特尔、领英、Twitter、雅虎和其他许多公司。其网站列了出第三方的专业支持。
7. MLlib
由于其速度,Apache Spark成为一个最流行的大数据处理工具。MLlib 是Spark的可扩展机器学习库。它集成了Hadoop并可以与NumPy和R进行交互操作。它包括了许多机器学习算法如分类、回归、决策树、推荐、集群、主题建模、功能转换、模型评价、ML管道架构、ML持久、生存分析、频繁项集和序列模式挖掘、分布式线性代数和统计。
8. NuPIC
本文来源:不详 作者:佚名