例如,发送者选取测量方式“+”,然后发送“→”来代表1。如果截获者选取的也是“+”,他的截获就不会被察觉。但是因为截获者是随机选取的测量方式,他也有50%的概率选择“×”,于是量子力学的测量概率特性使光子的偏振就变为了50%的概率“↗”和50%的概率“↘”。
在上面的这种情况下,作为接收方如果选取了和发送方同样的测量方式“+”,则把这个比特当做密码。但是接收方测量的是经过截获的光子,即光子的偏振因为测量已经坍缩成了50%的概率↗和50%的概率↘,接收方测量最终结果无论如何都会变为50%的概率↑和50%的概率→。于是测量这个光子偏振的时候,发送方和接收方结果不同的概率为50%×50%=25%。
因此想知道是否存在截获者,发送方和接收方只需要拿出一小部分密钥来对照。如果发现互相有25%的不同,那么就可以断定信息被截获了。同理,如果信息未被截获,那么二者密码的相同率是100%。于是BB84协议可以有效发现窃听,从而关闭通信,或重新分配密钥,直到没人窃听为止。
BB84量子密钥分配协议使得通讯双方可以生成一串绝对保密的量子密钥,用该密钥给任何二进制信息加密(比如做最简单的二进制“异或”操作,见表3)都会使加密后的二进制信息无法被解密,因此从根本上保证了传输信息过程的安全性。在这个协议基础上,世界各国都开展了传输用量子密钥加密过的二进制信息的网络建设,即量子保密通信网。中国在这方面走在了世界最前面。
▲表3.利用量子密钥给需要传输的原始信息做“异或”加密
中国科学技术大学潘建伟团队在合肥市实现了国际上首个所有节点都互通的量子保密通信网络,后又利用该成果为60周年国庆阅兵关键节点间构建了“量子通信热线”,之后研发的新型量子通信装备在北京投入常态运行,为“十八大”等国家重要政治活动提供信息安全保障。
科大国盾量子通信技术有限公司利用所转化的成果建成了覆盖合肥城区的世界上首个规模化量子通信网络,建成了覆盖合肥城区的世界上首个规模化量子保密通信网络,标志着大容量的城域量子通信网络技术开始成熟。
2013年国家批准立项的量子保密通信“京沪干线”,由中国科学技术大学承建,将于2016年年底前建成。该干线连接北京上海,全长2000余公里,是世界首条量子保密通信主干网,将大幅提高我国军事,政务,银行和金融系统的安全性。
量子纠缠态
我们可以用量子密钥给经典二进制信息加密。但是当我们需要传输量子比特时,就无法再使用量子密钥了,而需要使用“量子隐形传态”。理解量子隐形传态,首先要理解量子纠缠。
量子力学中最神秘的就是叠加态,而“量子纠缠”正是多粒子的一种叠加态。
以双粒子为例,一个粒子A可以处于某个物理量的叠加态,用一个量子比特来表示,同时另一个粒子B也可以处于叠加态。当两个粒子发生纠缠,就会形成一个双粒子的叠加态,即纠缠态。例如有一种纠缠态就是无论两个粒子相隔多远,只要没有外界干扰,当A粒子处于0态时,B粒子一定处于1态;反之,当A粒子处于1态时,B粒子一定处于0态。
用薛定谔的猫做比喻,就是A和B两只猫如果形成上面的纠缠态:
无论两只猫相距多远,即便在宇宙的两端,当A猫是“死”的时候,B猫必然是“活”;当A猫是“活”的时候,B猫一定是“死”(当然真实的情况是猫这种宏观物体不可能把量子纠缠维持这么长时间,几亿亿亿亿分之一秒内就会解除纠缠。但是基本粒子是可以的,比如光子。)。
这种跨越空间的、瞬间影响双方的量子纠缠曾经被爱因斯坦称为“鬼魅的超距作用”(spooky action at a distance),并以此来质疑量子力学的完备性,因为这个超距作用违反了他提出的“定域性”原理,即任何空间上相互影响的速度都不能超过光速。这就是著名的“EPR佯谬”(编者注:EPR是三位物理学家姓氏的首字母缩写,其中,E是爱因斯坦,P是波多尔斯基,R是罗森,1935年,他们三人为论证量子力学的不完备性而提出了该佯谬)。
后来物理学家玻姆在爱因斯坦的定域性原理基础上,提出了“隐变量理论”来解释这种超距相互作用。
不久物理学家贝尔提出了一个不等式,可以来判定量子力学和隐变量理论谁正确。如果实验结果符合贝尔不等式,则隐变量理论胜出。如果实验结果违反了贝尔不等式,则量子力学胜出。
▲表4.贝尔不等式的意义
但是后来一次次实验结果都违反了贝尔不等式,即都证实了量子力学是对的,量子纠缠是非定域的,而隐变量理论是错的,爱因斯坦的定域性原理必须被舍弃。
2015年,荷兰物理学家做的最新的无漏洞贝尔不等式测量实验,基本宣告了定域性原理的死刑。
一些新的理论研究指出,微观上的量子纠缠与宏观的热力学第二定律,即熵增定律有着密不可分的关系。微观系统产生的纠缠具有不可逆性,会导致信息的增加(例如一个量子比特所含的信息是零个比特,但是两个量子比特纠缠在一起,就会产生两个比特的冗余信息)。
根据香农提出的信息论,系统熵正比于冗余的信息(即无用的信息),因此宏观系统熵的增加,其根源很可能就来自微观的量子纠缠。
随着量子信息学的诞生,量子纠缠已经不仅仅是一个基础研究,它已经成为了量子信息科技的核心:例如利用量子纠缠可以完成量子通信中的量子隐形传态,可以完成一次性操作多个量子比特的量子计算。让更多的粒子纠缠起来是量子信息科技不断追寻的目标。
量子隐形传态
理解了量子纠缠,我们就可以理解量子隐形传态了。
由于量子纠缠是非局域的,即两个纠缠的粒子无论相距多远,测量其中一个的状态必然能同时获得另一个粒子的状态,这个“信息”的获取是不受光速限制的。于是,物理学家自然想到了是否能把这种跨越空间的纠缠态用来进行信息传输。
因此,基于量子纠缠态的量子通讯便应运而生,这种利用量子纠缠态的量子通讯就是“量子隐形传态”(quantum teleportation)。
虽然借用了科幻小说中隐形传态(teleportation)这个词,但量子隐形传态实际上和科幻中的隐形传态关系并不大,它是通过跨越空间的量子纠缠来实现对量子比特的传输。
本文来源:不详 作者:佚名