程序首先在Image1控件区域内画一个边长为200的正方形作为程序的演示窗口,故FormCreate事件如下:
procedure TForm1.FormCreate(Sender: TObject);
begin
// 画亮绿色的正方形演示框
Image1.Canvas.Brush.Color:=clBlack;
Image1.Canvas.FillRect(Rect(0,0,199,199));
Image1.Canvas.Pen.Color:=cllime;
Image1.Canvas.Rectangle(0,0,199,199);
DoubleBuffered := True;
end;
接着放入一个Timer实现点的绘制以及π的计算:
procedure TForm1.Timer1Timer(Sender: TObject);
var
a,b,i,ii:longint;
pi,piok:single;
begin
// 随机产生坐标点
i:=random(200);
ii:=random(200);
if (i*i+ii*ii<40000) then
begin
// 以200为半径的圆内的点设为蓝色
Image1.canvas.Pen.Color:=claqua;
a:=StrToInt(Label1.Caption);
Label1.Caption:=IntToStr(a+1);
//显示当前点的坐标
Label6.Caption:=IntToStr(Image1.Canvas.PenPos.X);
Label7.Caption:=IntToStr(Image1.Canvas.PenPos.Y);
end
else
begin
// 超出这个区域的点都在圆外设为黄色
Image1.Canvas.Pen.Color:=clyellow;
b:=StrToInt(Label2.Caption);
Label2.Caption:=IntToStr(b+1);
end;
// 画点(长为1像素的直线)
Image1.Canvas.MoveTo(i,ii);
Image1.Canvas.LineTo(i,ii+1);
// 计算pi的值
pi:=(4*(StrToInt(Label1.Caption))/(StrToInt(Label1.Caption)+StrToInt(Label2.Caption)));
Label3.Caption:=FloatToStr(pi);
// Label4显示的是最接近真实pi的值。
piok:=StrToFloat(Label4.Caption);
//得出最接近的圆周率值 piok
if (abs(pi-3.141592653589))<(abs(piok-3.141592653589)) then
Label4.Caption:=FloatToStr(pi);
end;
最后加入两个SpeedButton作为开始和暂停按钮,代码分别是Timer1.Enabled:=true;和Timer1.Enabled:=false;。好了,程序这样就完成了,赶快按下F9亲自模拟一下π的计算吧!
三、小结
虽然程序并没有采用圆周率的算法,但能通过随机数对π进行逼近,而由无数点描成的美妙圆弧让我们叹为观止。其实,这样的思想可以用于许多场合,比如对某个数学定理或者自然规律(彩票?)进行模拟,希望这样的思路对您有所启发。
欢迎访问最专业的网吧论坛,无盘论坛,网吧经营,网咖管理,网吧专业论坛
https://bbs.txwb.com
关注天下网吧微信/下载天下网吧APP/天下网吧小程序,一起来超精彩
|
本文来源:网络 作者:佚名