天下网吧 >> 网吧天地 >> 网吧技术 >> 网吧系统 >> 正文

Linux操作系统 内核工作队列的操作模式

2008-4-8赛迪网佚名

  1. 前言

  

  工作队列(workqueue)的Linux内核中的定义的用来处理不是很紧急事件的回调方式处理方法.

  

  以下代码的linux内核版本为2.6.19.2, 源代码文件主要为kernel/workqueue.c.

  

  2. 数据结构

  /* include/linux/workqueue.h */

  // 工作节点结构

  struct work_struct {

  // 等待时间

  unsigned long pending;

  // 链表节点

  struct list_head entry;

  // workqueue回调函数

  void (*func)(void *);

  // 回调函数func的数据

  void *data;

  // 指向CPU相关数据, 一般指向struct CPU_workqueue_struct结构

  void *wq_data;

  // 定时器

  struct timer_list timer;

  };

  

  struct execute_work {

  struct work_struct work;

  };

  

  /* kernel/workqueue.c */

  /*

  * The per-CPU workqueue (if single thread, we always use the first

  * possible CPU).

  *

  * The sequence counters are for flush_scheduled_work(). It wants to wait

  * until all currently-scheduled works are completed, but it doesn't

  * want to be livelocked by new, incoming ones. So it waits until

  * remove_sequence is >= the insert_sequence which pertained when

  * flush_scheduled_work() was called.

  */

  // 这个结构是针对每个CPU

  struct CPU_workqueue_struct {

  // 结构锁

  spinlock_t lock;

  // 下一个要执行的节点序号

  long remove_sequence; /* Least-recently added (next to run) */

  // 下一个要插入节点的序号

  long insert_sequence; /* Next to add */

  // 工作机构链表节点

  struct list_head worklist;

  // 要进行处理的等待队列

  wait_queue_head_t more_work;

  // 处理完的等待队列

  wait_queue_head_t work_done;

  // 工作队列节点

  struct workqueue_struct *wq;

  // 进程指针

  struct task_struct *thread;

  int run_depth; /* Detect run_workqueue() recursion depth */

  } ____cacheline_aligned;

  /*

  * The externally visible workqueue abstraction is an array of

  * per-CPU workqueues:

  */

  // 工作队列结构

  struct workqueue_struct {

  struct cpu_workqueue_struct *CPU_wq;

  const char *name;

  struct list_head list; /* Empty if single thread */

  };

  

  kernel/workqueue.c中定义了一个工作队列链表, 所有工作队列可以挂接到这个链表中:

  static LIST_HEAD(workqueues);

  

  3. 一些宏定义

  /* include/linux/workqueue.h */

  // 初始化工作队列

  #define __WORK_INITIALIZER(n, f, d) { \

  // 初始化list

  .entry = { &(n).entry, &(n).entry }, \

  // 回调函数

  .func = (f), \

  // 回调函数参数

  .data = (d), \

  // 初始化定时器

  .timer = TIMER_INITIALIZER(NULL, 0, 0), \

  }

  

  // 声明工作队列并初始化

  #define DECLARE_WORK(n, f, d) \

  struct work_struct n = __WORK_INITIALIZER(n, f, d)

  /*

  * initialize a work-struct's func and data pointers:

  */

  // 重新定义工作结构参数

  #define PREPARE_WORK(_work, _func, _data) \

  do { \

  (_work)->func = _func; \

  (_work)->data = _data; \

  } while (0)

  /*

  * initialize all of a work-struct:

  */

  // 初始化工作结构, 和__WORK_INITIALIZER功能相同,不过__WORK_INITIALIZER用在

  // 参数初始化定义, 而该宏用在程序之中对工作结构赋值

  #define INIT_WORK(_work, _func, _data) \

  do { \

  INIT_LIST_HEAD(&(_work)->entry); \

  (_work)->pending = 0; \

  PREPARE_WORK((_work), (_func), (_data)); \

  init_timer(&(_work)->timer); \

  } while (0)

  4. 操作函数

  

  4.1 创建工作队列

  

  一般的创建函数是create_workqueue, 但这其实只是一个宏:

  /* include/linux/workqueue.h */

  #define create_workqueue(name) __create_workqueue((name), 0)

  在workqueue的初始化函数中, 定义了一个针对内核中所有线程可用的事件工作队列, 其他内核线程建立的事件工作结构就都挂接到该队列:

  void init_workqueues(void)

  {

  ...

  keventd_wq = create_workqueue("events");

  ...

  }

  

  核心创建函数是__create_workqueue:

  

  struct workqueue_struct *__create_workqueue(const char *name,

  int singlethread)

  {

  int CPU, destroy = 0;

  struct workqueue_struct *wq;

  struct task_struct *p;

  // 分配工作队列结构空间

  wq = kzalloc(sizeof(*wq), GFP_KERNEL);

  if (!wq)

  return NULL;

  // 为每个CPU分配单独的工作队列空间

  wq->cpu_wq = alloc_percpu(struct CPU_workqueue_struct);

  if (!wq->CPU_wq) {

  kfree(wq);

  return NULL;

  }

  wq->name = name;

  mutex_lock(&workqueue_mutex);

  if (singlethread) {

  // 使用create_workqueue宏时该参数始终为0

  // 如果是单一线程模式, 在单线程中调用各个工作队列

  // 建立一个的工作队列内核线程

  INIT_LIST_HEAD(&wq->list);

  // 建立工作队列的线程

  p = create_workqueue_thread(wq, singlethread_CPU);

  if (!p)

  destroy = 1;

  else

  // 唤醒该线程

  wake_up_process(p);

  } else {

  // 链表模式, 将工作队列添加到工作队列链表

  list_add(&wq->list, &workqueues);

  // 为每个CPU建立一个工作队列线程

  for_each_online_cpu(CPU) {

  p = create_workqueue_thread(wq, CPU);

  if (p) {

  // 绑定CPU

  kthread_bind(p, CPU);

  // 唤醒线程

  wake_up_process(p);

  } else

  destroy = 1;

  }

  }

  mutex_unlock(&workqueue_mutex);

  /*

  * Was there any error during startup? If yes then clean up:

  */

  if (destroy) {

  // 建立线程失败, 释放工作队列

  destroy_workqueue(wq);

  wq = NULL;

  }

  return wq;

  }

  EXPORT_SYMBOL_GPL(__create_workqueue);

  

  // 创建工作队列线程

  static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,

  int CPU)

  {

  // 每个CPU的工作队列

  struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, CPU);

  struct task_struct *p;

  spin_lock_init(&cwq->lock);

  // 初始化

  cwq->wq = wq;

  cwq->thread = NULL;

  cwq->insert_sequence = 0;

  cwq->remove_sequence = 0;

  INIT_LIST_HEAD(&cwq->worklist);

  // 初始化等待队列more_work, 该队列处理要执行的工作结构

  init_waitqueue_head(&cwq->more_work);

  // 初始化等待队列work_done, 该队列处理执行完的工作结构

  init_waitqueue_head(&cwq->work_done);

  // 建立内核线程work_thread

  if (is_single_threaded(wq))

  p = kthread_create(worker_thread, cwq, "%s", wq->name);

  else

  p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, CPU);

  if (IS_ERR(p))

  return NULL;

  // 保存线程指针

  cwq->thread = p;

  return p;

  }

  static int worker_thread(void *__cwq)

  {

  struct CPU_workqueue_struct *cwq = __cwq;

  // 声明一个等待队列

  DECLARE_WAITQUEUE(wait, current);

  // 信号

  struct k_sigaction sa;

  sigset_t blocked;

  current->flags |= PF_NOFREEZE;

  // 降低进程优先级, 工作进程不是个很紧急的进程,不和其他进程抢占CPU,通常在系统空闲时运行

  set_user_nice(current, -5);

  /* Block and flush all signals */

  // 阻塞所有信号

  sigfillset(&blocked);

  sigprocmask(SIG_BLOCK, &blocked, NULL);

  flush_signals(current);

  /*

  * We inherited MPOL_INTERLEAVE from the booting kernel.

  * Set MPOL_DEFAULT to insure node local allocations.

  */

  numa_default_policy();

  /* SIG_IGN makes children autoreap: see do_notify_parent(). */

  // 信号处理都是忽略

  sa.sa.sa_handler = SIG_IGN;

  sa.sa.sa_flags = 0;

  siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));

  do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);

  // 进程可中断

  set_current_state(TASK_INTERRUPTIBLE);

  // 进入循环, 没明确停止该进程就一直运行

  while (!kthread_should_stop()) {

  // 设置more_work等待队列, 当有新work结构链入队列中时会激发此等待队列

  add_wait_queue(&cwq->more_work, &wait);

  if (list_empty(&cwq->worklist))

  // 工作队列为空, 睡眠

  schedule();

  else

  // 进行运行状态

  __set_current_state(TASK_RUNNING);

  // 删除等待队列

  remove_wait_queue(&cwq->more_work, &wait);

  // 按链表遍历执行工作任务

  if (!list_empty(&cwq->worklist))

  run_workqueue(cwq);

  // 执行完工作, 设置进程是可中断的, 重新循环等待工作

  set_current_state(TASK_INTERRUPTIBLE);

  }

  __set_current_state(TASK_RUNNING);

  return 0;

  }

  

  // 运行工作结构

  static void run_workqueue(struct CPU_workqueue_struct *cwq)

  {

  unsigned long flags;

  /*

  * Keep taking off work from the queue until

  * done.

  */

  // 加锁

  spin_lock_irqsave(&cwq->lock, flags);

  // 统计已经递归调用了多少次了

  cwq->run_depth++;

  if (cwq->run_depth > 3) {

  // 递归调用此时太多

  /* morton gets to eat his hat */

  printk("%s: recursion depth exceeded: %d\n",

  __FUNCTION__, cwq->run_depth);

  dump_stack();

  }

  // 遍历工作链表

  while (!list_empty(&cwq->worklist)) {

  // 获取的是next节点的

  struct work_struct *work = list_entry(cwq->worklist.next,

  struct work_struct, entry);

  void (*f) (void *) = work->func;

  void *data = work->data;

  // 删除节点, 同时节点中的list参数清空

  list_del_init(cwq->worklist.next);

  // 解锁

  // 现在在执行以下代码时可以中断,run_workqueue本身可能会重新被调用, 所以要判断递归深度

  spin_unlock_irqrestore(&cwq->lock, flags);

  BUG_ON(work->wq_data != cwq);

  // 工作结构已经不在链表中

  clear_bit(0, &work->pending);

  // 执行工作函数

  f(data);

  // 重新加锁

  spin_lock_irqsave(&cwq->lock, flags);

  // 执行完的工作序列号递增

  cwq->remove_sequence++;

  // 唤醒工作完成等待队列, 供释放工作队列

  wake_up(&cwq->work_done);

  }

  // 减少递归深度

  cwq->run_depth--;

  // 解锁

  spin_unlock_irqrestore(&cwq->lock, flags);

  }

  

  4.2 释放工作队列

  /**

  * destroy_workqueue - safely terminate a workqueue

  * @wq: target workqueue

  *

  * Safely destroy a workqueue. All work currently pending will be done first.

  */

  void destroy_workqueue(struct workqueue_struct *wq)

  {

  int CPU;

  // 清除当前工作队列中的所有工作

  flush_workqueue(wq);

  /* We don't need the distraction of CPUs appearing and vanishing. */

  mutex_lock(&workqueue_mutex);

  // 结束该工作队列的线程

  if (is_single_threaded(wq))

  cleanup_workqueue_thread(wq, singlethread_CPU);

  else {

  for_each_online_cpu(CPU)

  cleanup_workqueue_thread(wq, CPU);

  list_del(&wq->list);

  }

  mutex_unlock(&workqueue_mutex);

  // 释放工作队列中对应每个CPU的工作队列数据

  free_percpu(wq->CPU_wq);

  kfree(wq);

  }

  EXPORT_SYMBOL_GPL(destroy_workqueue);

  

  /**

  * flush_workqueue - ensure that any scheduled work has run to completion.

  * @wq: workqueue to flush

  *

  * Forces execution of the workqueue and blocks until its completion.

  * This is typically used in driver shutdown handlers.

  *

  * This function will sample each workqueue's current insert_sequence number and

  * will sleep until the head sequence is greater than or equal to that. This

  * means that we sleep until all works which were queued on entry have been

  * handled, but we are not livelocked by new incoming ones.

  *

  * This function used to run the workqueues itself. Now we just wait for the

  * helper threads to do it.

  */

  void fastcall flush_workqueue(struct workqueue_struct *wq)

  {

  // 该进程可以睡眠

  might_sleep();

  // 清空每个CPU上的工作队列

  if (is_single_threaded(wq)) {

  /* Always use first CPU's area. */

  flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_CPU));

  } else {

  int CPU;

  mutex_lock(&workqueue_mutex);

  for_each_online_cpu(CPU)

  flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, CPU));

  mutex_unlock(&workqueue_mutex);

  }

  }

  EXPORT_SYMBOL_GPL(flush_workqueue);

  

  flush_workqueue的核心处理函数为flush_CPU_workqueue:

  static void flush_cpu_workqueue(struct CPU_workqueue_struct *cwq)

  {

  if (cwq->thread == current) {

  // 如果是工作队列进程正在被调度

  /*

  * Probably keventd trying to flush its own queue. So simply run

  * it by hand rather than deadlocking.

  */

  // 执行完该工作队列

  run_workqueue(cwq);

  } else {

  // 定义等待

  DEFINE_WAIT(wait);

  long sequence_needed;

  // 加锁

  spin_lock_irq(&cwq->lock);

  // 最新工作结构序号

  sequence_needed = cwq->insert_sequence;

  // 该条件是判断队列中是否还有没有执行的工作结构

  while (sequence_needed - cwq->remove_sequence > 0) {

  // 有为执行的工作结构

  // 通过work_done等待队列等待

  prepare_to_wait(&cwq->work_done, &wait,

  TASK_UNINTERRUPTIBLE);

  // 解锁

  spin_unlock_irq(&cwq->lock);

  // 睡眠, 由wake_up(&cwq->work_done)来唤醒

  schedule();

  // 重新加锁

  spin_lock_irq(&cwq->lock);

  }

  // 等待清除

  finish_wait(&cwq->work_done, &wait);

  spin_unlock_irq(&cwq->lock);

  }

  }

  

  4.3 调度工作

  

  在大多数情况下, 并不需要自己建立工作队列,而是只定义工作, 将工作结构挂接到内核预定义的事件工作队列中调度, 在kernel/workqueue.c中定义了一个静态全局量的工作队列keventd_wq:

  static struct workqueue_struct *keventd_wq;

  

  4.3.1 立即调度

  // 在其他函数中使用以下函数来调度工作结构, 是把工作结构挂接到工作队列中进行调度

  /**

  * schedule_work - put work task in global workqueue

  * @work: job to be done

  *

  * This puts a job in the kernel-global workqueue.

  */

  // 调度工作结构, 将工作结构添加到事件工作队列keventd_wq

  int fastcall schedule_work(struct work_struct *work)

  {

  return queue_work(keventd_wq, work);

  }

  EXPORT_SYMBOL(schedule_work);

  

  /**

  * queue_work - queue work on a workqueue

  * @wq: workqueue to use

  * @work: work to queue

  *

  * Returns 0 if @work was already on a queue, non-zero otherwise.

  *

  * We queue the work to the CPU it was submitted, but there is no

  * guarantee that it will be processed by that CPU.

  */

  int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)

  {

  int ret = 0, cpu = get_CPU();

  if (!test_and_set_bit(0, &work->pending)) {

  // 工作结构还没在队列, 设置pending标志表示把工作结构挂接到队列中

  if (unlikely(is_single_threaded(wq)))

  cpu = singlethread_CPU;

  BUG_ON(!list_empty(&work->entry));

  // 进行具体的排队

  __queue_work(per_cpu_ptr(wq->cpu_wq, CPU), work);

  ret = 1;

  }

  put_CPU();

  return ret;

  }

  EXPORT_SYMBOL_GPL(queue_work);

  /* Preempt must be disabled. */

  // 不能被抢占

  static void __queue_work(struct CPU_workqueue_struct *cwq,

  struct work_struct *work)

  {

  unsigned long flags;

  // 加锁

  spin_lock_irqsave(&cwq->lock, flags);

  // 指向CPU工作队列

  work->wq_data = cwq;

  // 挂接到工作链表

  list_add_tail(&work->entry, &cwq->worklist);

  // 递增插入的序列号

  cwq->insert_sequence++;

  // 唤醒等待队列准备处理工作结构

  wake_up(&cwq->more_work);

  spin_unlock_irqrestore(&cwq->lock, flags);

  }

  

  4.3.2 延迟调度

  

  4.3.2.1 schedule_delayed_work

  /**

  * schedule_delayed_work - put work task in global workqueue after delay

  * @work: job to be done

  * @delay: number of jiffies to wait

  *

  * After waiting for a given time this puts a job in the kernel-global

  * workqueue.

  */

  // 延迟调度工作, 延迟一定时间后再将工作结构挂接到工作队列

  int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)

  {

  return queue_delayed_work(keventd_wq, work, delay);

  }

  EXPORT_SYMBOL(schedule_delayed_work);

  

  /**

  * queue_delayed_work - queue work on a workqueue after delay

  * @wq: workqueue to use

  * @work: work to queue

  * @delay: number of jiffies to wait before queueing

  *

  * Returns 0 if @work was already on a queue, non-zero otherwise.

  */

  int fastcall queue_delayed_work(struct workqueue_struct *wq,

  struct work_struct *work, unsigned long delay)

  {

  int ret = 0;

  // 定时器, 此时的定时器应该是不起效的, 延迟将通过该定时器来实现

  struct timer_list *timer = &work->timer;

  if (!test_and_set_bit(0, &work->pending)) {

  // 工作结构还没在队列, 设置pending标志表示把工作结构挂接到队列中

  // 如果现在定时器已经起效, 出错

  BUG_ON(timer_pending(timer));

  // 工作结构已经挂接到链表, 出错

  BUG_ON(!list_empty(&work->entry));

  /* This stores wq for the moment, for the timer_fn */

  // 保存工作队列的指针

  work->wq_data = wq;

  // 定时器初始化

  timer->expires = jiffies + delay;

  timer->data = (unsigned long)work;

  // 定时函数

  timer->function = delayed_work_timer_fn;

  // 定时器生效, 定时到期后再添加到工作队列

  add_timer(timer);

  ret = 1;

  }

  return ret;

  }

  EXPORT_SYMBOL_GPL(queue_delayed_work);

  

  

  // 定时中断函数

  static void delayed_work_timer_fn(unsigned long __data)

  {

  struct work_struct *work = (struct work_struct *)__data;

  struct workqueue_struct *wq = work->wq_data;

  // 获取CPU

  int CPU = smp_processor_id();

  if (unlikely(is_single_threaded(wq)))

  cpu = singlethread_CPU;

  // 将工作结构添加到工作队列,注意这是在时间中断调用

  __queue_work(per_cpu_ptr(wq->cpu_wq, CPU), work);

  }

  

  4.3.2.2 schedule_delayed_work_on

  

  指定CPU的延迟调度工作结构, 和schedule_delayed_work相比增加了一个CPU参数, 其他都相同

  /**

  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay

  * @cpu: CPU to use

  * @work: job to be done

  * @delay: number of jiffies to wait

  *

  * After waiting for a given time this puts a job in the kernel-global

  * workqueue on the specified CPU.

  */

  int schedule_delayed_work_on(int CPU,

  struct work_struct *work, unsigned long delay)

  {

  return queue_delayed_work_on(CPU, keventd_wq, work, delay);

  }

  

  /**

  * queue_delayed_work_on - queue work on specific CPU after delay

  * @cpu: CPU number to execute work on

  * @wq: workqueue to use

  * @work: work to queue

  * @delay: number of jiffies to wait before queueing

  *

  * Returns 0 if @work was already on a queue, non-zero otherwise.

  */

  int queue_delayed_work_on(int CPU, struct workqueue_struct *wq,

  struct work_struct *work, unsigned long delay)

  {

  int ret = 0;

  struct timer_list *timer = &work->timer;

  if (!test_and_set_bit(0, &work->pending)) {

  BUG_ON(timer_pending(timer));

  BUG_ON(!list_empty(&work->entry));

  /* This stores wq for the moment, for the timer_fn */

  work->wq_data = wq;

  timer->expires = jiffies + delay;

  timer->data = (unsigned long)work;

  timer->function = delayed_work_timer_fn;

  add_timer_on(timer, CPU);

  ret = 1;

  }

  return ret;

  }

  EXPORT_SYMBOL_GPL(queue_delayed_work_on);

  

  5. 结论

  

  工作队列和定时器函数处理有点类似, 都是执行一定的回调函数, 但和定时器处理函数不同的是定时器回调函数只执行一次, 而且执行定时器回调函数的时候是在时钟中断中, 限制比较多, 因此回调程序不能太复杂; 而工作队列是通过内核线程实现, 一直有效, 可重复执行, 由于执行时降低了线程的优先级, 执行时可能休眠, 因此工作队列处理的应该是那些不是很紧急的任务, 如垃圾回收处理等, 通常在系统空闲时执行,在xfrm库中就广泛使用了workqueue,使用时,只需要定义work结构,然后调用schedule_(delayed_)work即可。

欢迎访问最专业的网吧论坛,无盘论坛,网吧经营,网咖管理,网吧专业论坛https://bbs.txwb.com

关注天下网吧微信,了解网吧网咖经营管理,安装维护:


本文来源:赛迪网 作者:佚名

声明
本文来源地址:0
声明:本站所发表的文章、评论及图片仅代表作者本人观点,与本站立场无关。若文章侵犯了您的相关权益,请及时与我们联系,我们会及时处理,感谢您对本站的支持!联系Email:support@txwb.com.,本站所有有注明来源为天下网吧或天下网吧论坛的原创作品,各位转载时请注明来源链接!
天下网吧·网吧天下
  • 本周热门
  • 本月热门
  • 阅读排行